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ABSTRACT 

Trellis-coded modulation (TCM) is a technique where forward error correction 

coding and modulation are treated in a single operation without increasing the channel 

bandwidth. In this thesis the performance of a variable data rate TCM waveform 

transmitted over a channel is investigated. In general, TCM systems with rate 1/2 and rate 

2/3 convolutional codes and quadrature-shift keying (QPSK) and 8-phase-shift keying 

(PSK) modulation, respectively, are considered. The data rate of the later TCM system is 

50% faster than that of the former. Two cases are considered. In the first case, the number 

of memory elements K remains constant as the code rate increases. In the second case, 

the number of memory elements increases linearly with code rate, so that the total 

number of memory elements for 8-PSK, r=2/3 TCM is given by 1/ 22K K= , where 1/ 2K  

is the number of memory elements for the QPSK, r=1/2 convolutionally encoded TCM 

system. The effects of pulse-noise interference (PNI) in addition to additive white 

Gaussian noise (AWGN) are considered.  It was found that both TCM systems have 

significant resistance to PNI when K is large enough.  
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EXECUTIVE SUMMARY 

Trellis-coded modulation (TCM) is a technique where forward error correction 

coding and modulation are treated in a single operation without increasing the channel 

bandwidth. In this thesis the performance of a variable data rate TCM waveform 

transmitted over a channel is investigated. TCM was initially proposed by Ungerboeck 

[1] and combines binary convolutional codes with an M-ary signal constellation 
12mM += .   

In this thesis, TCM systems with rate 1/2 and rate 2/3 convolutional codes and 

quadrature-shift keying (QPSK) and 8-phase-shift keying (PSK) modulation, 

respectively, are examined when additive white Gaussian noise (AWGN) as well as both 

AWGN and pulse-noise interference (PNI) are present. The data rate of the latter system 

is 50% faster than that of the former given the same channel bandwidth. 

In the first case, where only AWGN is considered and the number of memory 

elements K remains constant as the code rate increases, the QPSK, r=1/2 system performs 

better than the 8-PSK, r=2/3 system. This was expected since using a higher code rate 

yields higher data rates at the cost of a loss in performance. 

A comparison between the two systems was made when the number of memory 

elements increased linearly with code rate, so that the total number of memory elements 

for 8-PSK, r=2/3 TCM is given by 1/ 22K K= , where 1/ 2K  is the number of memory 

elements for the QPSK, r=1/2 TCM. Initially, only AWGN was taken into consideration. 

A QPSK, r=1/2, K=1 system has better performance than a 8-PSK, r=2/3, K=2 system. 

Increasing the number of memory elements in both encoders by a factor of two, we 

obtain an overall improvement, but for 510bP −> , the QPSK, r=1/2 system still has better 

performance. For 510bP −< , the 8-PSK, r=2/3 system had a slightly better performance, 

on the order of 0.5 dB.  

 



 xviii

When the 8-PSK, r=2/3 system has four times as many encoder memory elements 

as the QPSK, r=1/2 system, the 8-PSK, r=2/3 system has better performance. In this case, 

we obtain both a higher data rate and better performance, but the complexity of the 

decoder is increased significantly. 

In the second case, the effect of both AWGN and PNI were considered. Both 

TCM systems exhibit significant resistance to PNI when K is large enough and when K 

increases, the degradation of the system due to PNI decreases, increasing the robustness 

of the system in PNI. Even small K results in some immunity from the degradation 

caused by PNI.  

The two systems were compared for the same total number of encoder memory 

elements. The QPSK, r=1/2 system has better performance than the 8-PSK, r=2/3 TCM 

system for K=2, but as K increases and ρ  decreases, the 8-PSK, r=2/3 system performs 

better than QPSK, r=1/2 system when /b oE N  is chosen for each system such that bP  is 

the same for both systems when / 1b iE N >> . 

Finally, a comparison between the QPSK, r=1/2 and the 8-PSK, r=2/3 systems 

were made with the latter system having more memory elements than QPSK, r=1/2 

system. Under these conditions the performance of the 8-PSK, r=2/3 system is better than 

that of the QPSK, r=1/2 system, and the difference between the two systems increases 

when the fraction of the time the PNI is on decreases.  

 

 



1 

I. INTRODUCTION  

A. BACKGROUND AND RELATED WORK 

Communications are vital in modern society. The transmission of information 

increases everyday, and data rates as high as possible are needed. In addition, reliable 

communication systems must receive data with the minimum probability data bit error, 

the minimum transmitted signal power, and the minimum possible channel bandwidth. 

Shannon’s noisy channel coding theorem states that if the channel bit rate is 

greater than channel capacity, then error free communication is not possible. When the 

channel bit rate is less than channel capacity, we can approach the Shannon limit by 

implementing an error control code. Automatic repeat request (ARQ) and forward error 

correction (FEC) coding are two basic error control strategies. 

ARQ is used for a two-way transmission system. When errors are detected, the 

receiver sends a request to the transmitter requesting a repeat of the message. The request 

is repeated until the message is received correctly.  

On the other hand, FEC coding is used for a one-way communication link and 

employs error–correcting codes that attempt to correct the errors detected at the receiver. 

Although many communication systems today employ some form of FEC coding, FEC 

coding requires more sophisticated decoding equipment than ARQ. 

Error correction coding both detects and corrects errors and is implemented by 

transmitting redundant bits. The total number of coded bits exceed the number of 

information bits, which means that the effective information rate is lower when the 

channel bandwidth is the same. On the other hand, keeping the same information rate 

implies that FEC requires more bandwidth than for the uncoded signal. Using a code rate 

/r k n= , FEC requires a bandwidth expansion of 1/ r  where 1r < .  

Trellis-coded modulation (TCM) is a technique that introduces FEC coding 

without decreasing data rate or increasing the channel signal bandwidth. With TCM, 

channel coding and modulation take place in a single operation in the transmitter. Trellis-

code modulation was introduced by Ungerboeck [1], in 1982 and is used in band-limited 
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channels where bandwidth expansion is not desirable. Although the number of 

transmitted bits are increased in order to achieve error correction coding, the information 

bit rate and the bandwidth remain constant. 

The redundant bits which are transmitted with TCM are obtained by expanding 

the size of the signal constellation with respect to uncoded systems. Using the technique 

of mapping by set partitioning,[1, 2, 3] Ungerboeck introduced error correction coding, 

expanding the signal set rather than increasing the bandwidth.  

 

B. OBJECTIVES 

TCM has been examined extensively for additive white Gaussian noise (AWGN), 

but the effects of pulse-noise interference (PNI) on TCM systems have previously been 

evaluated only for TCM systems with quadrature phase-shift keying (QPSK) [4]. Because 

of the importance of high data rate communications to modern military systems as well as 

the necessity for military systems to potentially operate in a hostile electronic 

environment, it is important to understand the effects of narrowband noise interference on 

TCM systems. The effect of both AWGN and PNI on TCM systems are examined in this 

thesis. 

The performance of two specific TCM systems are examined, the first with QPSK 

modulation and rate 1/ 2r =  convolutional coding and the second with 8-phase-shift 

keying (8-PSK) modulation and 2 / 3r =  convolutional coding both for different numbers 

of encoder memory elements K=1, 2, 3, and 4. Two types of comparison are also made. 

First, the number of memory elements K is kept constant as the code rate is increased, 

and the performance between TCM with code rate 1/ 2r =  and QPSK modulation and 

TCM with code rate 2 / 3r =  and 8-PSK is compared. Second, the number of memory 

elements is increased linearly with code rate, so the QPSK, r=1/2 system has half as 

many memory elements as the 8-PSK, r=2/3 system.  

The approach taken to evaluate the effects of PNI on TCM systems is model the 

channel and the noise in such a manner as to allow analytic expressions to be derived for 

the probability of bit error. As previously mentioned, to the best of the author’s 

knowledge, this has only been done previously for the special case of TCM with QPSK 



3 

modulation [4]. The results derived in this thesis for 8-PSK TCM and the general bound 

developed in Chapter IV are novel. The data have been produced using Mathcad, 

transferred into Excel and reproduced as graphs using Matlab.     

 

C. THESIS ORAGNIZATION 
Apart from Chapter I, which is the introduction and includes the objective of this 

thesis, there are four more chapters. In Chapter II, some background theory on TCM is 

presented, in particular the basic theory of TCM and set partitioning. TCM systems with 

code rate 1/ 2r = , QPSK modulation and code rate 2 / 3r = , 8-PSK modulation in 

AWGN for encoders with K=1, 2, 3, 4 memory elements are examined in Chapter III. 

For the same channel bandwidth, the latter TCM system can transmit data 50% faster 

than the former TCM system. The effect on the bound on the probability of bit error bP  

with forward error correction coding of the number of summation terms that are used to 

compute bP  is also examined. In Chapter IV, the performance of the two TCM systems 

examined in Chapter III are examined when both AWGN and pulse-noise interference 

(PNI) are present. Chapter V summarizes the thesis conclusions and makes 

recommendations for future work. 
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II. TCM BACKGROUND 

A. TCM 

1. General Introduction 

Trellis-coded modulation is a method that combines binary convolutional codes 

with code rate /( 1)r m m= +  with M-ary signal constellations. With TCM forward error 

correction coding can be achieved without increasing the bandwidth compared to the 

corresponding uncoded modulation with the same data rate.  

The M-ary signal constellation may be in one or two dimensions as shown in 

Figures 1, 2, and 3, where the horizontal axis in each figure corresponds to the 

normalized in-phase baseband signal amplitude, and the vertical axis corresponds to the 

normalized quadrature baseband signal amplitude. Each black dot represents an M-ary 

symbol, where each symbol represents q bits and 2qM = . 

 

Figure 1. One-dimensional, or pulse-amplitude modulation signal, constellation. 
The 2-PAM signal is equivalent to BPSK. 

 
 

2-PAM 

4-PAM 

8-PAM 
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Figure 2. Two-dimensional amplitude modulation signal constellation.  

 

 
Figure 3. Two-dimensional phase modulation signal constellation.  

 

 

From Figures 2 and 3 we can see that 4-quadrature amplitude modulation (4-

QAM) and 4-PSK are equivalent. The difference is that 4-QAM, just like any QAM 

signal, is generated by applying amplitude modulation. On the other hand, 4-PSK, like 

any PSK signal, is generated by applying phase modulation. PSK signals have the same 

amplitude regardless of the symbol transmitted. 

8-CROSS 
16-QAM 

4-QAM 

4-PSK 
8-PSK 
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TCM uses signal set expansion in order to avoid increasing the signal bandwidth, 

and coding gain is achieved without increasing the rate at which symbols are transmitted. 

An example that is described in [3] makes the TCM method clearer. 

 
Figure 4. (a) Uncoded transmission transmitting 2 bits every T seconds using 4-PSK 
modulation. (b) Convolutional encoder transmitting with rate 2/3 and 4-PSK modulation 
with bandwidth expansion. (c) Convolutional encoder transmitting with rate 2/3 and 8-

PSK modulation with no bandwidth expansion. From [2]. 

 

 

Figure 4(a) shows a digital scheme that transmits one signal consisting of 2 bits 

every T seconds using 4-PSK modulation.  

4-PSK 
constellation 

4-PSK constellation 

8-PSK constellation 
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Figure 4(b) shows a 2/3 convolutional encoder using 4-PSK modulation. Now the 

signal represents 4/3 information bits every 2T/3 seconds in order to have the same 

information rate as the initial uncoded system in Figure 1(a). The disadvantage of this 

configuration is that the bandwidth is increased by 50% as compared with the uncoded 

system.  

Figure 4(c) shows a convolutional encoder with code rate 2/3 using 8-PSK 

modulation. The duration of a symbol is not reduced, and each symbol contains two 

information bits. In this case there is no bandwidth expansion since 8-PSK and 4-PSK 

occupy the same bandwidth given the same symbol rate. The disadvantage in this case is 

the increased complexity of the encoder as compared to the encoder in Figure 4(b). 

With TCM, error correction coding and modulation are combined into one step. 

The redundant bits are created by expanding the modulation signal set with respect to the 

signal set that is required for uncoded modulation. Error control is provided by signal set 

expansion without increasing the bandwidth. In this technique, which is called mapping 

by set partitioning [1, 2, 5] the signal set is designed to have maximum free Euclidean 

distance freed  between symbols as compared to maximizing the Hamming distance 

between sequences. For 2-AM and 4-PSK, Euclidean distance and Hamming distance are 

equivalent, but this is not true for M>4. 

 

2. Set Partitioning 

In Figure 5, we see a partitioning of the 8-PSK signal constellation. The signal is 

partitioned into subsets, increasing the Euclidean distance between symbols in each 

subset.  
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Figure 5. Partitioning of the 8-PSK constellation. 

 

Before partitioning, the minimum distance of 8-PSK is given by 0d . For Partition 

1, the signal constellation is divided into two subsets, where each subset consists of four 

symbols, and the minimum distance between symbols in each subset has increased to 1d  

as we see in Figure 5.  

 

 

0d

 

2d  

1d  

partition 1 

partition 2 

partition 3 

0

0 

0 0

0

1

1 1 

1 1 

…… 
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Figure 6. Partition 2 and 3 of 8-PSK with 1/ 2r =  and 2 / 3r =   encoders, 

respectively. 
 

 

In Partition 2, the signal constellation is divided into four subsets, where each 

subset consists of two symbols, and the minimum distance between symbols in each 

subset has increased to 2d  as we see in Figure 5. As can be seen from Figure 6, we apply 

one bit to an encoder with code rate 1/ 2r =  and the encoder output selects a symbol set 

from the second partition level. The remaining one bit is used to select one of the two 

symbols from that specific set. In this case, the TCM error trellis has one parallel 

transition, which is shown in Figure 5. 

In Figures 7 and 8 we see a TCM encoder and the error trellis diagram for 8-PSK 

signaling with a single parallel transition, respectively, when two information bits per 

unit time are transmitted. 

 
8-PSK 

 1/2 

 
8-PSK 

 
 
2/3 

Partition 2 :  
1 parallel transitions 

Partition 3 :  
No parallel transition 
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Figure 7. TCM encoder with a single parallel transition/branch for 8-PSK signaling. 

From [6]. 
 
 

 
 

Figure 8. Error trellis diagram for TCM encoder with 8-PSK signaling and parallel 
transitions. From [6]. 

 
 

In Partition 3, the signal constellation is divided into eight subsets, where each 

subset consists of one only symbol as we see in Figure 5. If we apply two bits to an 

encoder with code rate 2 / 3r = , the encoder output selects a symbol set from the third 
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partition level. As we see from Figure 6, there are no parallel transitions. An example of a 

TCM encoder with no parallel transition is shown in Figure 9.  

 

 
 

Figure 9. TCM encoder with no parallel transition using 8-PSK signaling. From [6]. 
 
 
 

B. TCM ENCODER 
When we want to transmit m bits per symbol duration T, without coding we can 

use either 2m -PSK or 2m -QAM. In order to achieve forward error correction coding 

without increasing the bandwidth compared to uncoded modulation and keep the same 

data rate, we implement TCM using 12m+ -PSK or 12m+ -QAM and partition the signal 

constellation.  

As illustrated in the last section, if we apply one bit to an encoder of code rate 

1/ 2r = , the encoder output chooses one of the subsets from the second partition level. 

Each of the subsets contains 12m−  symbols, and there are 12 1m− −  parallel transitions in 

the TCM trellis. If we apply two bits to an encoder with code rate 2 / 3r = , the output 

chooses one of the subsets from the third partition level. Each of the subsets contains 
22m−  symbols, and there are 22 1m− −  parallel transitions in the TCM trellis. Finally, if we 

apply m bits to an encoder of code rate /( 1)r m m= + , the output chooses one of the  
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subsets from the (m+1) partition level. Each of the subsets contains one symbol, and there 

are no parallel transitions in the TCM trellis. In Figure 10 we see the general structure of 

Underboeck encoder.  

 

 
Figure 10. General structure of Underboeck encoder. From [7]. 

 

 

C. TCM PERFORMANCE 

Convolutionally encoded systems are linear [8]. For this reason, the encoder 

output sequences 1v , 2v , …, nv  can be obtained as the convolution of the input sequence 

u with the appropriate impulse responses.  

TCM systems are not in general linear systems. As a result, the probability of bit 

error depends on the specific code sequence that was transmitted, and it is not possible to 

use the same approach that is used for conventional convolutional codes. For TCM we 

must first obtain the average input-output weight enumerating function (AIOWEF) 

( , )aveT X Y . 



14 

The AIOWEF can be determined by computing the error vector of code sequence 

ν  and code sequence 'ν , which is defined as ' '( , )e ν ν ν ν= ⊕  [6]. Although TCM is not 

generally linear, a convolutional code is a linear code, so without loss of generality, we 

can choose ' 0ν = , and e ν= . As a result, the error trellis is identical to the convolutional 

code trellis with the difference that each branch is labeled with the error vector for that 

specific transition.  

The signal flow graph of the convolutional code shows each branch from one 

state to another. Each branch is labeled with the product d jX Y Z , called the branch 

transmittance, where d  is the weight of the encoder output and j  is the weight of the 

information sequence for that specific branch [6]. The exponent of Z  corresponds to the 

length of a branch which is equal to one, since the transition is from one state to the next. 

In order to obtain the AIOWEF, we need the average Euclidean weight 

enumerator (AEWE) 2 ( )e X∆ , which is the average of the squared-Euclidean distance 

enumerating functions between all pairs of signal points in the constellation having the 

same error vector [5]. The average Euclidean weight enumerator (AEWE) 2 ( )e X∆  is 

given by 
2
v∆ ( )2

e
V

1∆ ( ) = eX X
M ∑ , where 2 ( )v e∆  is the squared-Euclidean distance between 

ν  and some arbitrary reference 'ν  and M is the number of sequences that have the same 

error vector. 

The AEWE depends on how bits are assigned to constellation symbols, referred to 

as mapping. For example, consider the mapping shown in Figure 11, referred to as Gray 

mapping. The procedure is the same for other signal mappings. 
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Figure 11. Gray mapping rule for 4-PSK signal constellation. 

 
 

From Figure 11, for Gray mapping we see that for e(00,01)=e(11,01)=01. Since  
2
v∆ ( )2

e
V

1∆ ( ) = X
M

eX ∑ , we have in this case 2 2 2 2 2 2
01

1 1 1∆ ( ) ( )
2 2 2

X X X X X X= + = + =∑ .  

Similarly, e(00,11)=e(01,10)=11 and 2 4 4 4 4 4
11

1 1 1∆ ( ) ( )
2 2 2

X X X X X X= + = + =∑ .  For 

e(00,10)=e(01,11)=10 we have 2 2 2 2 2 2
10

1 1 1∆ ( ) ( )
2 2 2

X X X X X X= + = + =∑ .  Finally, 

for e(00,00)=e(11,11)=00 we have 2 0 0 0 0 0
00

1 1 1∆ ( ) ( ) 1
2 2 2

X X X X X X= + = + = =∑ .    

These results are summarized in Table 1.   

 

 

 

 

 

 

 

 

 

11 01 

00 10 
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Table 1. Average Euclidean weight enumerator for 4-PSK with Gray mapping. 

e w(e) 2
e∆ ( )X  

00 w(00)=0 2 0
00 ( )X X∆ =  

01 w(01)=1 2 2
01( )X X∆ =  

10 w(10)=1 2 2
10 ( )X X∆ =  

11 w(11)=2 2 4
11( )X X∆ =  

 

In order to obtain the AIOWEF, we replace dX in the branch transmittance with 

the AEWE 2 ( )e X∆ .  

For the convolutional encoder with code rate 1/ 2r =  and constraint length 3ν = , 

shown in Figure 12, the AIOWEF is obtained by replacing 2with XX  on the signal flow 

graph, which is shown in Figure 13.  

 
Figure 12. Code rate r=1/2,v=3 convolutional encoder. After [6]. 
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Figure 13. Signal flow graph for r=1/2, v=3 convolutional encoder with Gray 
mapped QPSK/TCM. From [6]. 

 
 

We know that the transfer function of the convolutional encoder shown in Figure 

12 is given by  

5( , ) (1 2 )T X Y X Y XY= −    (2 - 1) 

Since 2( , ) ( , )aveT X Y T X Y=  then from (2.1) we have 

10 2 1( , ) [1 2 ]aveT X Y X Y X Y −= −     (2 - 2) 

 

We also know that  

1 2 3 4 51(1 ) 1 ........
1

r r r r r r
r

−− = = + + + + + +
−

  (2 - 3) 
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From (2.2), (2.3) and for 22r X Y= , we obtain the AIOWEF for the TCM 

encoder shown in Figure 12 in series form as 

10 2 4 2 6 3 8 4( , ) [1 2 4 8 16 ...]aveT X Y X Y X Y X Y X Y X Y= + + + + +  (2 - 4) 

 

From equation (2.4), we see that there is one path with a squared-Euclidean 

distance of 10, two paths with a squared-Euclidean distance of 12, four paths with a 

squared-Euclidean distance of 14, eight paths with a squared-Euclidean distance of 16, 

sixteen paths with a squared-Euclidean distance of 18, and so on. 

 

D. PROBABILITY OF BIT ERROR  
The probability of bit error for a TCM system using a convolutional encoder with 

code rate /( 1)r m m= +  and 2m -PSK modulation is given by [6] 

 

2

0

( )
2

freed sc free
b b

B E d
P P parallel Q

m N

⎛ ⎞
⎜ ⎟≈ +
⎜ ⎟
⎝ ⎠

    (2 - 5) 

 

 

where ( )bP parallel  is the probability of choosing an incorrect parallel path, 
freedB is the 

total number of information bit errors on all non-parallel code sequences that are a 

distance freed  from the correct code sequence, 0N is the power spectral density of the 

AWGN, and ( 1)sc bE r m E= + , where bE  is the average bit energy. As we have seen from 

the equation (2-5), parallel paths are not desirable because they result in an irreducible 

error floor. For that reason, in TCM systems it is often preferable to use an encoder with 

code rate /( 1)r m m= +  and ( 1)2 m+ -PSK modulation. In that case, the probability of bit 

error is given by 
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2

02
freed sc free

b

B E d
P Q

m N

⎛ ⎞
⎜ ⎟≈
⎜ ⎟
⎝ ⎠

    (2 - 6) 

 

where 
freedB  is the total number of information bit errors on all code sequences that are a 

Euclidean distance freed  from the correct code sequence. 

In next chapter we will discuss the derivation of equation (2-6) in more detail. 

 

E. SUMMARY 
In this chapter we examined the main principles of TCM systems. In the next 

chapter we will investigate in more detail TCM systems with code rate 1/ 2r =  and 

QPSK modulation and 2 / 3r =  and 8-PSK modulation and the effect of AWGN as well 

as the number of memory elements in the convolutional encoders. 
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III. PERFORMANCE OF TCM SYSTEMS IN AWGN 

A. INTRODUCTION 

In Chapter II, we examined the background necessary to understand the basic 

principles of TCM. One- and two-dimensional signal constellations, transmission of 

uncoded and coded bits with or without bandwidth expansion, partitioning, trellis 

diagrams, encoders with and without parallel transmissions, the AEWE, and the 

AIOWEF of the convolutional code are some of the principles that were discussed.  

In this chapter, we apply these principles to TCM systems with code rate 1/ 2r = , 

QPSK modulation and code rate 2 / 3r = , 8-PSK modulation in AWGN for encoders 

with K=1, 2, 3, 4 memory elements and compare the two systems. 

We also examine the effect on the bound on the probability of bit error with 

forward error correction coding of the number of summation terms that are used to 

compute bP .  

 

B. PROBABILITY OF BIT ERROR 

The probability of bit error bP  for convolutionally encoded system is upper 

bounded by [9]: 

1

free

b d d
d d

P B P
k

∞

=

< ∑      (3 - 1) 

where dP  is the probability that a path of weight d  is selected, k  is the number of 

encoded information bits for each block of n code bits, d  is the Hamming weight of the 

path, freed is the minimum Hamming distance, and dB  is the total number of information 

bit errors that can occur when a path of weight d  is selected. 

In an analogous manner, for a TCM system with no parallel transitions, bP  is 

upper bounded by either [6]: 
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2

1 0

1
2i

sc i
b d

i

E dP B Q
m N

∞

=

⎛ ⎞
< ⎜ ⎟⎜ ⎟

⎝ ⎠
∑      (3 - 2) 

 

 
or 
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0

( , )1 exp
exp( / 4 ),  12 4

c

c

s freesc free ave
b

s oo

E dE d T X YP Q
X E N Ym N N Y

⎛ ⎞ ⎛ ⎞ ∂⎜ ⎟< ⎜ ⎟⎜ ⎟ = − =⎜ ⎟ ∂⎝ ⎠⎝ ⎠
       (3 - 3) 

 
 

where 
idB  is the total number of information bit errors on all paths that are a Euclidean 

distance 2
id  from the correct path and 2 2

i freed d=  [6]. When bP  is less than 210−  , the first 

four nonzero terms are generally sufficient.  

 

We obtain the 
idB s  from the AIOWEF using the same procedure as for 

convolutional codes: 

 

2

1 1

( , )
i

i

dave
d

Y i

T X Y B X
Y

∞

= =

∂
=

∂ ∑      (3 - 4) 

 

The probability of bit error for TCM with no parallel paths is reasonably 

approximated by the first term of equation (3-2) when / 1b oE N >> : 

2

02
free freed sc d

b

B E d
P Q

m N

⎛ ⎞
⎜ ⎟≈
⎜ ⎟
⎝ ⎠

     (3 - 5) 
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C. PERFORMANCE WITH CODE RATE 1/2 IN AWGN. 
For QPSK modulation, we use a rate ½ convolutional code to obtain TCM with 

parallel transitions. On this section, we consider a simple convolutional encoder with 

K=1 in order to illustrate the basic concept. 

Figure 14 is a block diagram of a convolutional encoder with 1K =  and code rate 

1/ 2r = . 

 
Figure 14. Convolutional encoder with code rate 1/ 2  and 1K = . 

 

From the state diagram for the encoder shown in Figure 14, shown in Figure 15, 

we derive the signal flow graph, which is shown in Figure 16.  

 

 
Figure 15. State diagram for the 1/ 2r = , K=1 convolutional encoder. 

2S  1S  

1/01 

0/11 

1/10 

 

+ 

K=1

(0)v  

(1)v
 

(0)u  
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Figure 16. Signal flow graph for the 1/ 2,r = K=1 convolutional encoder with Gray 

mapping. 

 

In order to find the probability of bit error, we must first to find the average input-

output enumerating transfer function (AIOWEF) for the convolutional code of the 

encoder in Figure 14. The AIOWEF is derived from signal flow graph of the 

convolutional encoder, using Gray mapping, shown in Figure 11 for QPSK. 

From the signal flow graph of the encoder in Figure 16, we obtain the state 

equations: 

4
0 1S X S=         (3 - 6) 

2 2
1 1 iS YX S YX S= +        (3 - 7) 

 

Combining equations (3-6) and (3-7), we have 

6

0 21 i
YXS S

YX
=

−
       (3 - 8) 

 

From equation (3-8) we derive the AIOWEF: 

6
6 2 10

2( , ) (1 )
1ave

i

S YXT X Y YX YX
S YX

−= = = −
−

     (3 - 9) 

 

Taking the derivative of the AIOWEF, we have 

iS 1S  oS  
2YX  

2YX  

4X  
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6 2 2 1( , ) [1 (2 )]aveT X Y X YX YX
Y

−∂
= − −

∂
     (3 - 10) 

We know that  

1 2 3(1 ) 1 ...x x x x−− = + + + +      (3 - 11) 

From equations (3-10) and (3-11) and for Y=1, we obtain 

6 8 10 12 14 16( , ) 2 3 4 5 6 ... 
1

aveT X Y X X X X X X
YY

∂
= + + + + + +

=∂
  (3 - 12) 

Since  
22 2 2
31 2 4

1 2 3 4
( , ) ...

1
dd d daveT X Y B X B X B X B X

YY
∂

= + + + +
=∂

   (3 - 13) 

we can see by comparing (3-12) and (3-13) that 

 2 2 2
1 1 2 2 3 31,  d 6, 2,  d 8,  B 3,  d 10,  ...B B= = = = = =     (3 - 14) 

So, the AIOWEF given by equation (3-9) gives the information that there is one 

path that has a squared-Euclidean distance of six from the reference path, there are two 

paths that have a squared-Euclidean distance of eight, there are three paths that have a 

squared-Euclidean distance of ten, four paths with a squared-Euclidean distance of 12, 

and so on. In this case, we take only the first four terms in order to compute the 

probability of bit error. This simpification, as we will see later, does not change the 

results. 

Since there are no parallel paths for a TCM system utilizing QPSK modulation 

with a 1/ 2r =  convolutional code, the probability of bit error be approximated by 

equation (3-5) with m=1 to obtain 

2

02free

sc free
b d

E d
P B Q

N

⎛ ⎞
⎜ ⎟≈
⎜ ⎟
⎝ ⎠

    (3 - 15) 

Since 

( 1)sc bE r m E= +      (3 - 16) 

then sc bE E=  in this case. 
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In light of equation (3-2) and (3-14), we derive the upper bound on the probability 
of bit error with AWGN as [4, 6]  

    

 

0 0 0 0

0 0

3 4 5 62 3 4

7 8       +5 6 ...

b b b b
b

b b

E E E EP Q Q Q Q
N N N N

E EQ Q
N N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
< + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (3 - 17) 

   

As mentioned before, we use only the first four terms in order to compute the 

probability of bit error. This simplification, as we will see later, does not change the 

results. From equation (3-17), we get 

 

b
0 0 0 0

3 4 5 6 P 2 3 4b b b bE E E EQ Q Q Q
N N N N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≈ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   (3 - 18) 

 
 

Using only the first term when / 1b oE N >> , we get 

b
0

3 P bEQ
N

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
     (3 - 19) 

 

In Figure 17, we observe the probability of bit error for a TCM system with 

QPSK modulation and a 1/ 2r =  encoder with one memory element and gray mapping. 

Only AWGN was taken into consideration. Figure 17 also compares the results obtained 

when bP  is computed using six, four, and one summation terms. 

As we observe in Figure 17, the probability of bit error is virtually the same for 
410bP −<  regardless of the number of terms used. We also see that the difference between 

four terms and six terms is very small regardless of bP . As a result, for a probability of bit 

error less than 410− , we need use only the first term since it is the dominant term. For this 
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encoder, this is not an important simplification, but when there are more memory 

elements and the complexity of encoder is increased, this simplification will be helpful. 

0 1 2 3 4 5 6 7 8 9 10 11 12
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r=1/2, K=1 with 6 terms
r=1/2, K=1 with 4 terms
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Figure 17. TCM system performance with QPSK modulation and a 1/ 2r = encoder 
with K=1 and Gray mapping in AWGN. 

 

 

D. PERFORMANCE OF ENCODER WITH CODE RATE 2/3 IN AWGN 

1. Encoder with r=2/3 and K=2 

In this subsection we examine the performance of an encoder with two memory 

elements 2K =  and code rate 2 / 3r = . The modulation we assumed is 8-PSK, and the 

TCM system using the encoder shown in Figure 18 has no parallel paths. The state 

diagram is shown in Figure 19 and, instead of using Gray mapping, we use natural 

mapping. The squared Euclidean distance for naturally mapped 8-PSK is shown in Table 

2. 
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Figure 18. Convolutional encoder with 2 / 3r =  and K=2. From [6]. 

 

Table 2. Squared-Euclidean distance for naturally mapped 8-PSK. 

e 2 ( )e X∆  

000 0X  

001 0.586X  

010 2X  

011 0.586 3.4141 1
2 2

X X+  

100 4X  

101 3.414X  

110 2X  

111 0.586 3.4141 1
2 2

X X+  
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Figure 19. State diagram of the 2 / 3r = , K=2 encoder shown in Figure 18. From [6]. 

 

 

 

Figure 20. Trellis diagram of the code generated by the rate 2 / 3r = , K=2 encoder 
shown in Figure 18. From [6]. 
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From the error trellis diagram of the encoder shown in Figure 21, the minimum 

squared-Euclidean distance corresponds to the path 0 2 1 0S S S S− − −  and is 2 1.758freed = . 

This path is unique, and its information weight is 1/ 2
freedB = . Continuing, we find the 

next larger squared-Euclidean distance 2
1 2.344freed + = , which corresponds to the paths 

0 2 3 0S S S S− − −  and 0 2 2 1 0S S S S S− − − − . The information weight 
1freedB
+

 for these paths 

is 1 and 3/8, respectively, so the total information weight 1 11/ 8
freedB + = . The next larger 

squared-Euclidean distance 2
2 2.586freed + =  corresponds to the path 0 3 0S S S− − , and the 

information weight is 2 1
freedB + = . The next larger squared-Euclidean distance corresponds 

to the two paths 0 3 2 1 0S S S S S− − − −  and 0 2 3 0S S S S− − − , with information weight 2 

and 3/4, respectively, and is 2
3 3.172freed + = . The total information weight for 2

3freed +  is 

3 11/ 4
freedB + = .         

From equation (3-2) and the results of the previous paragraph, we have 

 

2 2 2 22
1 2 3

1 1

( , ) 1 11 11 ...
2 8 4

free free free freei

i

d d d ddave
d

Y i

T X Y B X X X X X
Y

+ + +
∞

= =

∂
= = + + + +

∂ ∑   (3 - 20) 

 

Since there are no parallel paths in the encoder, from (3-2) and (3-20) the 

probability of bit error is bounded by 

0 0 0 0

1 11 1 11 1.758 2.344 2.586 3.172
4 16 2 8

b b b b
b

E E E EP Q Q Q Q
N N N N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
< + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  (3 - 21) 

since m=2 and ( 1) 2sc b bE r m E E= + = .      (3 - 22) 

The approximate probability of bit error bP  using only the first term is 

0

1 1.758
4

b
b

EP Q
N

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
    (3 - 23) 
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Figure 21. The probability of bit error for TCM with a 2 / 3r = , K=2 encoder and 8-
PSK. 

 

As we observe in Figure 21, the probability of bit error with respect to /b oE N  for 

TCM with the 2 / 3r = , K=2 encoder and 8-PSK is the same for 510bP −<  regardless of 

the number of summation terms used. In this case, the difference between one term and 

four terms is almost negligible for 5 410 10bP− −< < . As a result, for a probability of bit 

error less than 410− , only the first term is needed since it is the dominant term. 

 

2. Encoder with r=2/3 and K=3 
In this section we examine the performance of an encoder with K=3 and code rate 

2 / 3r = . The modulation is again 8-PSK, and the resulting TCM system trellis has no 

parallel paths. The encoder is shown in Figure 22 and Figure 23 is the  trellis diagram of  

the encoder. Once again, natural mapping, shown in Table 2, is used. 
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Figure 22. Convolutional encoder with 2 / 3r =  and K=3. From [6]. 

 

 

Figure 23. Trellis diagram of the code generated by the 2 / 3r = , K=3 
encoder shown in Figure 22. From [6]. 
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From trellis diagram shown in Figure 23, the minimum squared-Euclidean 

distance corresponds to the paths 0 1 2 4 0S S S S S− − − − , 0 3 6 0S S S S− − − , and 

0 1 2 6 0S S S S S− − − − , and 2 4.586freed = . The information weight of each of them is 2, 3/2, 

and 3/2, respectively, and the total information weight is  5
freedB = . Continuing with the 

same procedure, the next larger squared-Euclidean distance is 2
1 5.172freed + = and 

corresponds to the paths 0 3 5 4 0S S S S S− − − − , 0 3 5 6 0S S S S S− − − − , 

0 3 6 3 6 0S S S S S S− − − − − , 0 3 7 4 0S S S S S− − − − , and 0 1 2 7 4 0S S S S S S− − − − − . The 

information weight 
1freedB
+

 for these paths is 3/2, 4, 3/2, 1, and 1, respectively, which 

makes the total information weight 1 9
freedB + = . The next largest squared-Euclidean 

distance is 2
2 5.758freed + =  and corresponds to the paths 0 3 7 5 4 0S S S S S S− − − − −  and 

0 1 2 7 5 4 0S S S S S S S− − − − − −  with information weight equal to 5/6 for each of them. This 

results in 2 5 / 3
freedB + = . 

From equation (3-4) and the results of the previous paragraph, we have 

 

2 2 22
1 2

1

( , ) 55 9 ...
1 3

free free freei

i

d d ddave
d

i

T X Y B X X X X
YY

+ +
∞

=

∂
= = + + +

=∂ ∑   (3 - 24) 

 As was previously explained and shown in Figures 17 and 21 for encoders with 

r=1/2, K=1 and r=2/3, K=2, the first term in  the series is generally the dominant term. In 

this case, for the encoder with r=2/3 and K=3, we compute probability of bit error bound 

using only the first term. 

From (3-2) and using only the first term, we get 

    

0

5 4.586
2

b
b

EP Q
N

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
     (3 - 25) 

since  2sc bE E=  and m=2. 
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From equation (3-25), the approximate probability of bit error for a TCM system 

with 8-PSK modulation and a 2 / 3r =  encoder with three memory elements and natural 

mapping is shown in Figure 24. Comparing Figure 24 with Figure 21, we see a 

significant improvement when K increases from two to three. 
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Figure 24. TCM system performance with 8-PSK modulation and a r=2/3 encoder 
with K=3 and natural mapping in AWGN . 

 

 

3. Encoder with r=2/3 and K=4 
In this section we examine the performance of an encoder with K=4 memory 

elements and code rate 2 / 3r = . Once again, the modulation used is 8-PSK with natural 

mapping. The encoder is shown in Figure 25, and the resulting TCM system trellis has no 

parallel paths. Figure 26 is a diagram of the encoder trellis.  
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Figure 25. Encoder with code rate 2 / 3r =  and K=4. 
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Figure 26. Trellis diagram of Encoder with code rate 2 / 3r =  and four memory 
elements. 

 

From trellis diagram in Figure 26, the minimum squared-Euclidean distance 

corresponds to the paths 0 2 8 12 6 0S S S S S S− − − − − , 

0 1 4 10 7 5 12 6 0S S S S S S S S S− − − − − − − − , 0 1 4 10 7 5 13 0S S S S S S S S− − − − − − − , and  

0 1 4 8 12 6 0S S S S S S S− − − − − − , and 2 5.172freed = . The information weight of each path is 

1/4, 1/2, 1/4, and 1/2, respectively, and the total information weight is  3 / 2
freedB = . 
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Following the same steps as previously, we obtain the approximate probability of 

bit error for the r=2/3, K=4 TCM system as 

0

3 5.172
4

b
b

EP Q
N

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
     (3 - 26) 

From equation (3-26), the approximate probability of bit error for a TCM system 

with 8-PSK modulation and a 2 / 3r =  encoder with four memory elements and natural 

mapping is shown in Figure 27.  
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Figure 27. TCM system performance with 8-PSK modulation and a 2 / 3r = encoder 
with K=4 and natural mapping in AWGN. 
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E. COMPARISON BETWEEN TCM SYSTEMS WITH DIFFERENT CODE 
RATES AND AN EQUAL NUMBER OF MEMORY ELEMENTS IN 
AWGN 

1. Comparison between Different TCM Systems with K=2 in AWGN 

In this subsection, the performance between TCM with QPSK, r=1/2 encoding 

and 8-PSK, r=2/3 encoding, but the same number of encoder memory elements K=2, is 

compared. The encoders are shown in Figures 14 and 18, respectively. 

As we see from Figure 28, for 510bP −=  the QPSK, r=1/2 system requires  

/ 5.6b oE N =  dB, and the 8-PSK, r=2/3 system requires / 9.7b oE N =  dB, which yields a 

difference of 2.1 dB. We also notice that for decreasing bP , the difference in /b oE N   

between the two systems increases, and the 8-PSK, r=2/3 system requires a much higher 

/b oE N  than the QPSK, r=1/2 system in order to achieve the same probability of bit error. 

It is obvious that when K=2 , the QPSK, r=1/2 system has better performance than the 8-

PSK, r=2/3 system. 
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Figure 28. Comparison between TCM with r=1/2 and r=2/3 encoders for 
K=2. 
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2. Comparison between Different TCM Systems with K=3 in AWGN 
In this subsection, the performance between TCM with QPSK, r=1/2 encoding 

and 8-PSK, r=2/3 encoding is compared when K=3.   

As we see from Figure 29, for 510bP −=  the QPSK, r=1/2 system requires 

/ 5.1b oE N =  dB, and the system with 8-PSK, r=2/3 requires / 6.3b oE N =  dB, which 

yields a difference of 1.2 dB. It is obvious that with K=3, the QPSK, r=1/2 system has 

better performance than the 8-PSK, r=2/3 system, but the difference is much less than 

when K=2.  
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Figure 29. Comparison between TCM with r=1/2 and r=2/3 encoders for K=3. 

 

3. Comparison between Different TCM Systems with K=4 in AWGN 

In this subsection, the performance between TCM with QPSK, r=1/2 encoding 

and 8-PSK, r=2/3 encoding is compared when K=4.   
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As we see from Figure 30, for a probability of bit error greater than 310− , the 8-

PSK, r=2/3 system has better performance than the QPSK, r=1/2 system. When the 

probability of bit error is less than 310− , the performance of the QPSK, r=1/2 system is 

better. For 510bP −= , the QPSK, r=1/2 system requires / 4.7b oE N =  dB, and the system 

with 8-PSK, r=2/3 requires / 5.3b oE N =  dB, which yields a difference of 0.6 dB. 

For 910bP −= , these values are 7.4 dB and 8.3 dB respectively, and the difference is 0.9 

dB, which means that for smaller bP , the performance of the QPSK, r=1/2 system is 

better relative to the 8-PSK, r=2/3 system. These results were expected because using a 

higher code rate yields higher data rates at the cost of a loss in performance. 
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Figure 30. Comparison between TCM with r=1/2 and r=2/3 encoders for K=4. 
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F. COMPARISON BETWEEN TCM SYSTEMS WITH DIFFERENT CODE 
RATES AND NUMBERS OF MEMORY ELEMENTS IN AWGN 

1. Comparison between TCM Systems with r=1/2, K=1 and r=2/3, K=2 

In this subsection, we compare the performance between two TCM systems when 

the number of memory elements increases linearly with code rate. As we see in Figure 

31, the TCM system with QPSK, r=1/2 and K=1 has better performance than the TCM 

system with 8-PSK, r=2/3 and K=2. For 510bP −= , the QPSK, r=1/2 system requires  

/ 7.9b oE N =  dB, while the TCM system with 8-PSK, r=2/3 requires / 9.6b oE N =  dB, 

which yields a difference of 1.7 dB. For 910bP −= , /b oE N  is 10.8 dB and 12.7 dB, 

respectively, and the difference is 1.9 dB. Once again, the overall performance of 8-PSK, 

r=2/3 is poorer than QPSK, r=1/2. 
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Figure 31. Comparison between TCM with QPSK, r=1/2, K=1 and 8-PSK, r=2/3, 
K=2. 
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2. Comparison between TCM Systems with QPSK, r=1/2, K=2 and 8-
PSK, r=2/3, K=4 

In this subsection, we compare the performance between the QPSK, r=1/2, K=2 

and 8-PSK, r=2/3, K=4  TCM systems. As we see in Figure 32, the performance of these 

two systems is the same for a probability of bit error of 510− . For 510bP −< , the 

performance of the QPSK, r=1/2 system is better than that of the 8-PSK, r=2/3 system. 

On the other hand, when 510bP −< , the 8-PSK, r=2/3 system is better, and for 910bP −= , 

the required /b oE N  improves by a little bit less than a half of dB as compared with the 

QPSK, r=1/2 system. 

0 1 2 3 4 5 6 7 8 9 10
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

P
b

r=1/2, K=2
r=2/3, K=4

 

Figure 32. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK, r=2/3, 
K=4. 
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3. Comparison between TCM Systems with QPSK, r=1/2, K=2 and r=2/3, 
K=8 

In this subsection, we compare the performance between the QPSK, r=1/2, K=2 

and 8-PSK, r=2/3, K=8 TCM systems. As we see in Figure 33, this time the overall 

performance of the 8-PSK, r=2/3 system is better than QPSK, r=1/2 system. For 
510bP −= , the 8-PSK, r=2/3 system requires 1.6 dB less /b oE N  as compared with the 

QPSK, r=1/2 system. It is obvious that increasing the number of memory elements in the 

8-PSK, r=2/3 system improves performance at the expense of decoding complexity. 
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Figure 33. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK, r=2/3, 
K=8. 
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G. SUMMARY 
In this chapter, the performance of TCM in AWGN with r=1/2 encoding and 

QPSK modulation and r=2/3 encoding with 8-PSK modulation was examined for K=1, 2, 

3, and 4. In order to compute the probability of bit error, only the first term in the upper 

bound, which is the dominant term for 510bP −< , was used. This does not significantly 

affect the precision of the results.    

A comparison between TCM systems with the same number of memory elements 

K was made. The QPSK, r=1/2 system always has better performance than the 8-PSK,  

r=2/3 system.  

The two TCM systems were also compared when the number of memory 

elements in the 8-PSK, r=2/3 system was larger than for the QPSK, r=1/2 system. It was 

found that the QPSK, r=1/2, K=1 system has better performance than the 8-PSK, r=2/3, 

K=2 system, no matter what /b oE N  is. When we increase the number of memory 

elements in both encoders by a factor of two, we get an improvement, but for 510bP −> , 

the QPSK, r=1/2 system still has better performance. For bP  smaller than 510− , the 8-

PSK, r=2/3 system has a slightly better performance, on the order of one-half dB. Finally, 

when the 8-PSK, r=2/3 system has four times as many memory elements as the QPSK, 

r=1/2 system, the 8-PSK, r=2/3 system achieves a better performance, on the order of 1.6 

dB for a probability of bit error of 510− . In this case we get both a higher data rate and 

better performance, but the complexity of the decoder increases significantly. 

In the next chapter, the performance of the TCM systems examined in this chapter 

are examined when both AWGN and pulse-noise interference are present. 
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IV. PERFORMANCE OF TCM SYSTEMS WITH PULSE NOISE 
INTERFERENCE 

A. INTRODUCTION 

In the previous chapter, the performance of TCM systems in AWGN was 

examined. A comparison between two different systems having same number of memory 

elements as well as one TCM system having more memory elements was made.  

In this chapter the same two TCM systems are examined when, in addition to 

AWGN, pulse noise interference (PNI) is also present. We assume that the average 

interference power remains constant regardless of the time that the PNI is on. That 

implies that the instantaneous interference power increases as the fraction of the time the 

interference is on decreases.  

 

B. PERFORMANCE BOUNDS ON TCM WITH PNI 
The probability of bit error is upper bounded by  

min

, ,
1 1

1 1 '
j k j k

j

b d l d l
j l l kd

P B P
m A

∞ ∞ ∞

= = =

< ∑ ∑ ∑    (4 - 1) 

where 
jdA  is the total number of error paths that are a squared-Euclidean distance of 2

jd  

from the all-zero error path regardless of length, ,j kd lB is the total number of information 

bit ones on the thk  error path consisting of l  branches that are a squared-Euclidean 

distance of 2
jd  from the all-zero path, and ,'

j kd lP is the probability of selecting the thk  

error path of length l  that is a squared-Euclidean distance of 2
jd  from the all-zero error 

path. 

 The conditional probability ,'
j kd lP  is given by [6]: 
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=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑    (4 - 2) 

where ρ  is the fraction of time the PNI is on, 1ρ =  implies continuous interference, i  of 

the kl  are the branches are affected by PNI and AWGN, and the remaining ( )kl i−  

branches are affected only by AWGN. 

 

C. PERFORMANCE OF TCM WITH QPSK AND RATE 1/2 ENCODING 
WITH PNI 

Figure 14 shows a block diagram of an encoder with 1K =  and code rate 1/ 2r = . 

The state diagram and the signal flow graph of the encoder is shown in Figures 15 and 

16, respectively.  

As we mentioned at the beginning of Chapter III, for TCM with QPSK and r=1/2 

encoding, each transmitted symbol contains one data bit, and m=1. Hence, from equation 

(3-16), sc bE E= . 

In light of equation (3-9) and (3-14), we see there is one path that has a squared-

Euclidean distance of six, there are two paths that have a squared-Euclidean distance of 

eight, there are three paths that have a squared-Euclidean distance of ten, four paths with 

a squared-Euclidean distance of 12, and so on. In this case, we use only the first term in 

order to approximate the probability of bit error. This simplification does not 

significantly affect the results. From the signal flow graph in Figure 16, we see that the 

path 0 1 0S S S− −  has 2 6freed = . Since 1l =3, there are three different probabilities that the 

signal is affected by PNI. In the first occasion, the interference affects no branch of the 

path, in the second it affects one of the two branches of the path, 0 1S S−  or 1 0S S− , and 

finally, it can affect both of them. Generally, the formula for the probability of selecting a 

specific sequence is 

,
0

' ( )
2j k

b
d l

T

E a bP i Q
N N

⎛ ⎞⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

   (4 - 3) 

where we define 
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and /T o iN N N ρ= + , a and b are the sum of the squared-Euclidean distances of the 

branches affected by AWGN only and by both AWGN and PNI, respectively, given that 

oN  is the power spectral density (PSD) of the AWGN and iN  is the PSD of the 

interference. 

In light of equation (4-3) and (4-4), when PNI affects all branches, the probability 

of selecting this specific sequence is 

1,
32 4(2)

2free
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  (4 - 5) 

When the interference affects zero branches, the probability of selecting this 

specific sequence is 

1,
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When the interference affects only one branch the probability of selecting this 

specific sequence is 

1,
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  (4 - 7) 

In light of (4-1), (4-2), (4-5), (4-6), and (4-7) we have 
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⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≈ − + − + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

  (4 - 8) 

since 1
freedA =  and 

1,3 1
freedB = .  

In Figure 34, we see the performance of the QPSK, r=1/2, K=1 TCM system with 

PNI. In this and all other figures in this thesis examining the effects of PNI, 0/bE N  is 

chosen so that 810bP −=  when / 1b iE N >> . The fraction of the time ρ  that the 
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interference is on is varied from 1ρ =  to 0.01ρ = . Taking as a reference 510bP −=  and 

610bP −= , we compare the required /b iE N  for different ρ .  

As we see in Figure 34, the maximum degradation due to PNI occurs for 0.01ρ =  

and is 7.6 dB for 510bP −= . For 610bP −= , the degradation increases to 10.7 dB. 
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Figure 34. Performance of QPSK, 1/ 2r =  TCM system with K=1 and PNI with 
/b oE N = 10.2 dB. 
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D. PERFORMANCE OF TCM WITH 8-PSK AND RATE 2/3 ENCODING 
WITH PNI 

In this section, we consider the same 8-PSK, r=2/3 TCM system that was 

examined in Chapter III.  

1. Encoder with K=2 
The encoder, the state diagram and the error trellis diagram are shown in Figures 

18, 19, and 20, respectively. From the error trellis diagram, the minimum squared-

Euclidean distance corresponds to the path 0 2 1 0S S S S− − − , and 2 1.758freed = . This path 

is unique, and its information weight is 
1,3 1/ 2

freedB = . The PNI can affect i=0, i=1, i=2, or 

i=3 branches of this path. When i=0, there is no PNI on any branch. When i=1, the PNI 

can occur on any one of the three branches, 0 2S S− , or 2 1S S− , or, 1 0S S− . When i=2, 

PNI can occur on 
3
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 combinations of three branches, and for i=3 all branches are 

affected by PNI.  

From (4-2), (4-4) and (4-5), we have for the path 0 2 3 0S S S S− − −  

, 1 1

3
3 ,3

3
(1 ) (0)

0free freed dP Pρ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

   when i=0  

      
1

2
,3

3
(1 ) (1)

1 freedPρ ρ
⎛ ⎞

+ − +⎜ ⎟
⎝ ⎠

    when i =1 

      
1

2 1
,3

3
(1 ) (2)

2 freedPρ ρ
⎛ ⎞

+ − +⎜ ⎟
⎝ ⎠

   when i =2 

      
1

3
,3

3
(3)

3 freedPρ
⎛ ⎞

+⎜ ⎟
⎝ ⎠

     when i =3  (4 - 9) 

where  

 
1,3

0 0 0 0

1.7581 0.586 0.586 0.586 1(0)
4 4free

b
d b

EP Q E Q
N N N N

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟= + + = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  (4 - 10) 
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1,3
0 0 0
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The next larger squared-Euclidean distance 2
1 2.344freed + = , which corresponds to 

the paths 0 2 1 3 0S S S S S− − − −  and 0 2 2 1 0S S S S S− − − − . The information weight 

1 1,4freedB
+

, 
1 2,4freedB
+

 for these paths is 1 and 3/8, respectively, so the total information weight 

is 
1 ,4 11/ 8

freedB
+

= . The PNI can affect i=0, i=1, i=2, i=3, or i=4 branches of this path.  

From (4-2), (4-4) and (4-5), for the path 0 2 1 3 0S S S S S− − − − , we have 

1 1 1 1

4 3 2 2
,4 ,4 ,4 ,4

4 4 4
(1 ) (0) (1 ) (1) (1 ) (2)

0 1 2free free free freed d d dP P P Pρ ρ ρ ρ ρ
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1 1
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where  
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For the path 0 2 2 1 0S S S S S− − − − , we have 

2 2 2 2
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The next largest squared-Euclidean distance 2
2 2.586freed + =  corresponds to the 

path 0 3 0S S S− − , and the information weight is 
2 ,2 1

freedB
+

= . The PNI can affect i=0, i=1, 

or i=2 branches of this path. 

From (4-2), (4-4) and (4-5) for the path 0 3 0S S S− − , we have 

1 1 1 1

2 2
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2 2 2
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0 1 2free free free freed d d dP P P Pρ ρ ρ ρ
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where  
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2freed b

T

P Q E
N

⎛ ⎞⎛ ⎞
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From (4-1), the bound on bP  is 

1 1 2 1,3 ,4 ,4 ,2free free free freeb d d d dP P P P P≈ + + +       (4 - 30) 
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As we see from Figure 35, PNI degrades system performance. Taking as a 

reference point 510bP −=  and /b oE N = 12.2 dB, / 11.5b iE N =  dB is required for 1ρ =  

and / 18.6b iE N =  dB for 0.02ρ = . Hence, the maximum degradation due to PNI at 

510bP −=  occurs for 0.02ρ =  and is 7.1 dB. For 610bP −= , / 13.46b iE N =  dB and 

/ 24.1b iE N =  dB are required for 1ρ =  and 0.01ρ = , respectively, which increases the 

degradation to 10.6 dB. 
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Figure 35. Performance of 8-PSK, r=2/3 TCM with K=2 and PNI with /b oE N = 12.2 
dB. 

 

2. Encoder with K=3 

The encoder and the error trellis diagram are shown in Figures 22 and 23, 

respectively. From the error trellis diagram, the minimum squared-Euclidean distance 

corresponds to the paths  0 1 2 4 0S S S S S− − − − , 0 3 6 0S S S S− − − , and 
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0 1 2 6 0S S S S S− − − −  and 2 4.586freed = . The information weight of each path is 2, 3/2, 

and 3/2, respectively, and the total information weight is  5
freedB = .  

For the first path 0 1 2 4 0S S S S S− − − − , the interference can occur for i=0, i=1, 

i=2,  i=3, or i=4 branches of the path. From (4-2), (4-4) and (4-5) we have 
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4 4 4
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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For the second path, 0 3 6 0S S S S− − − , the interference can occur for i=0, i=1, i=2, 

or i=3 branches of the path. From (4-2), (4-4) and (4-5), we have 

1 1 1 1

3 2 2
,3 ,3 ,3 ,3

3 3 3
(1 ) (0) (1 ) (1) (1 ) (2)

0 1 2free free free freed d d dP P P Pρ ρ ρ ρ ρ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

    

      
1

3
,3

3
(3)

3 freedPρ
⎛ ⎞

+⎜ ⎟
⎝ ⎠

        (4 - 37) 

 

where  

 
1,3

0 0 0 0

4.5863 2 0.586 2 3(0)
4 4free

b
d b

EP Q E Q
N N N N

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟= + + = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  (4 - 38) 

1,3
0 0 0 0 0 0

3 1 2 0.586 2 1 2 0.586 2 1 2 0.586 2(1)
4 3 3 3freed b b b

T T T

P Q E Q E Q E
N N N N N N N N N

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

1,3
0 0

1 2 2.586 1 0.586 4(1)
2 4freed b b

T T

P Q E Q E
N N N N

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

    (4 - 39) 

1,3
0 0 0

1 1 2 0.586 2 1 2 0.586 2 1 2 0.586 2(2)
4 3 3 3freed b b b

T T T T T T

P Q E Q E Q E
N N N N N N N N N

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + + + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

1,3
0 0

1 2.586 2 1 4 0.586(2)
2 4freed b b

T T

P Q E Q E
N N N N

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

   (4 - 40) 

1,3
4.5863(3)

4free

b
d

T

EP Q
N

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
       (4 - 41) 

For the third path, 0 1 2 6 0S S S S S− − − − , the interference can occur for i=0, i=1, 

i=2,  i=3, or i=4 branches of the path. From (4-2), (4-4) and (4-5), we have 
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Finally, from (4-1), (4-4) and (4-5) the total bP  is 

1 1 2,3 ,4 ,4free free freeb d d dP P P P≈ + +      (4 - 48) 

As we see from Figure 36, once again system performance is degraded by PNI, 

but much less than when K=2. Taking as a reference point 510bP −= , / 10.2b iE N =  dB is 

required for 1ρ =  and / 14.3b iE N =  dB is required for 0.1ρ = , where 0/ 8.6bE N =  dB. 

Hence, the maximum degradation due to PNI at 510bP −=  occurs for 0.1ρ = and is 4.1 

dB. For 610bP −= , / 12.9b iE N = dB and / 19.6b iE N = dB are required for 1ρ =  and 

0.01ρ = , respectively, which increases the degradation to 6.7 dB. It is noteworthy that, 

in order to attain 610bP −= , we require / 19.6b iE N <  dB, but 510bP −=  is attained for all 

/b iE N  when 0.01ρ =  and 0/ 8.6bE N = dB.  
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Figure 36. Performance of 8-PSK, r=2/3, TCM with K=3 and PNI with /b oE N = 8.6 
dB. 

 

3. Encoder with K=4 

The encoder and the error trellis diagram are shown in Figures 25 and 26, 

respectively. 

From the error trellis diagram, the minimum squared-Euclidean distance 

corresponds to the paths 0 2 8 12 6 0S S S S S S− − − − − , 

0 1 4 10 7 5 12 6 0S S S S S S S S S− − − − − − − − , 0 1 4 10 7 5 13 0S S S S S S S S− − − − − − − , and  

0 1 4 8 12 6 0S S S S S S S− − − − − − , and 2 5.172freed = . The information weight of each path is 

1/4, 1/2, 1/4, and 1/2, respectively, and the total information weight is  3 / 2
freedB = . 

For the first path, 0 2 8 12 6 0S S S S S S− − − − − , the interference can occur for i=0, 

i=1,  i=2,  i=3, i=4, or i=5 branches of the path. Hence, from (4-2), (4-4) and (4-5), we 

have 
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For the second path, 0 1 4 10 7 5 12 6 0S S S S S S S S S− − − − − − − − , the interference can 

occur for i=0, i=1, i=2, i=3, i=4, i=5, i=6, i=7, or i=8 branches of the path. 

Hence, from (4-2), (4-4) and (4-5), we have 
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For the third path, 0 1 4 10 7 5 13 0S S S S S S S S− − − − − − − , the interference can occur 

for i=0, i=1,  i=2,  i=3, i=4, i=5, i=6, or i=7 branches of the path. 

Hence, from (4-2), (4-4) and (4-5), we have 
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For the fourth path, 0 1 4 8 12 6 0S S S S S S S− − − − − − , the interference can occur for 

i=0, i=1,  i=2,  i=3, i=4, i=5, or i=6 branches of the path. 

Hence, from (4-2), (4-4) and (4-5), we have 
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Finally, from (4-1), (4-4) and (4-5), the total bP  is 

1 1 1 1,5 ,6 ,7 ,8free free free freeb d d d dP P P P P≈ + + +    (4 - 83) 

 

As we see from Figure 37, and taking as a reference point 510bP −=  and 

0/ 7.8bE N =  dB, / 9.0b iE N =  dB is required for 1ρ =  and / 11.7b iE N =  dB for 

0.1ρ = . The maximum degradation due to PNI, which occurs for 0.1ρ = , is 2.7 dB. For 
610bP −=  and the same signal-to-noise ratio, / 9.0b iE N =  dB and / 15.6b iE N =  dB are  
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required for 0.01ρ =  and 0.02ρ = , respectively, which increases the degradation to 6.6 

dB. We easily conclude that, while PNI degrades performance, the degradation is much 

less than for smaller value of K. 
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Figure 37. Performance of 8-PSK, r=2/3, TCM with K=4 and PNI with /b oE N = 7.8 
dB. 

 

 

The results for 8-PSK, r=2/3, TCM with K=2, 3, and 4 are summarized in Tables 

3 and 4, where the /b oE N  was selected for 810bP −=  when / 1b iE N >> . 
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Table 3. Performance of 8-PSK, r=2/3 TCM with K=2, 3, 4 for 510bP −=  in PNI. 

Encoder /b oE N  ρ  /b iE N  Remarks 

r=2/3, K=2 12.2 dB 1ρ =  11.5 dB 

r=2/3, K=2 12.2 dB 0.02ρ =  18.6 dB 

Degradation of the system by 

7.1 dB.  

r=2/3, K=3 8.6 dB 1ρ =  12.2 dB 

r=2/3, K=3 8.6 dB 0.1ρ =  14.3 dB 

Degradation of the system by 

4.1 dB. 

r=2/3, K=4 7.8 dB 1ρ =    9.0 dB 

r=2/3, K=4 7.8 dB 0.1ρ =  11.7 dB 

Degradation of the system by 

2.7 dB. 

 

 

Table 4. Performance of 8-PSK, r=2/3, TCM with K=2, 3, 4 for 610bP −=  in PNI. 

Encoder /b oE N  ρ  /b iE N  Remarks 

r=2/3, K=2 12.2 dB 1ρ =  13.2 dB 

r=2/3, K=2 12.2 dB 0.01ρ =  24.1 dB 

Degradation of the system by 

10.6 dB.  

r=2/3, K=3 8.6 dB 1ρ =  12.9 dB 

r=2/3, K=3 8.6 dB 0.01ρ =  19.6 dB 

Degradation of the system by 

6.7 dB. 

r=2/3, K=4 7.8 dB 1ρ =    9.0 dB 

r=2/3, K=4 7.8 dB 0.02ρ =  15.6 dB 

Degradation of the system by 

6.6 dB. 
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E. COMPARISON BETWEEN QPSK AND 8-PSK TCM SYSTEMS  

1. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=2 

As can bee seen from Figure 38, for ρ =1, taking as a reference 510bP −= , the 

QPSK, r=1/2, K=2 system has better performance than the 8-PSK, r=2/3, K=2 system by 

1.8dB. At 710bP −= , the two systems have the same performance, and for 710bP −< , the 

8-PSK, r=2/3 system is superior. Figure 39 shows that for 510bP −=  and ρ =0.2, the 

QPSK, r=1/2, K=3 system has better performance than the 8-PSK, r=2/3, K=3 system by 

2.8 dB, and Figure 40 shows that for ρ =0.01, the QPSK, r=1/2 system has 510bP −<  for 

all /b iE N . As can be seen, when 1ρ < , the lower data rate system always outperforms 

the higher data rate system in terms of the /b iE N  and /b oE N  required to achieve a 

specific bP .  
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Figure 38. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=2 in 
PNI for ρ =1 with /b oE N =8 dB and /b oE N =12.2 dB, respectively. 
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Figure 39. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=2 in 
PNI for ρ =0.2 with /b oE N =8 dB and /b oE N =12.2 dB, respectively. 
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Figure 40. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=2 in 
PNI for ρ =0.01 with /b oE N =8 dB and /b oE N =12.2 dB, respectively. 

 

 

2. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3, TCM with K=3. 

As can be seen from Figures 41 and 42, for 1ρ =  and 0.2ρ = , respectively, and 

for 510bP −= , the QPSK, r=1/2, K=3 system has better performance than the 8-PSK, 

r=2/3, K=3 system by 1.1 dB and 1.6 dB for 1ρ =  and 0.2ρ = , respectively. Figure 43 

shows that for ρ =0.01 the 8-PSK, r=2/3 system has better performance, and 510bP −<  no 

matter what /b iE N  is. 
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Figure 41. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=3 for 
ρ =1 in PNI with /b oE N =7.4 dB and /b oE N =8.6 dB, respectively. 
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Figure 42. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=3 for 
ρ =0.2 in PNI with /b oE N =7.4 dB and /b oE N =8.6 dB, respectively. 
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Figure 43. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=3 for 
ρ =0.01 in PNI with /b oE N =7.4 dB and /b oE N =8.6 dB, respectively. 

 

 

3. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=4 

As can be seen from Figures 44 and 45, for 1ρ =  and 0.2ρ = , respectively, and 

for 510bP −= , the 8-PSK, r=2/3 system has better performance than the QPSK, r=1/2 

system by 0.9 dB and 0.1 dB for 1ρ =  and 0.2ρ = , respectively. Figure 46 shows that 

for ρ =0.01 the QPSK, r=1/2 system is better than the 8-PSK, r =2/3 system, but 
510bP −<  for both systems for all /b iE N . 

 

 

 

 



78 

 

 

 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/Ni (dB)

P
b

r=1/2,ρ=1
r=2/3,ρ=1

0.86 dB

 

Figure 44. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=4 for 
ρ =1 in PNI with /b oE N =7.1 dB and /b oE N =7.8 dB, respectively. 
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Figure 45. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=4 for 
ρ =0.2 in PNI with /b oE N =7.1 dB and /b oE N =7.8 dB, respectively. 
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Figure 46. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM with K=4 for 
ρ =0.01 in PNI with /b oE N =7.1 dB and /b oE N =7.8 dB, respectively. 

 

 

4. Comparison between TCM with QPSK, r=1/2, K=1 and 8-PSK, r=2/3, 
K=2 

In this subsection we compare the performance between the QPSK, r=1/2, K=1 

and 8-PSK, r=2/3, K=2 TCM systems. As we see in Figure 47, for ρ =1 and ρ =0.2, the 

performance of the two systems is approximately the same for a probability of bit error of 
510− , and the required /b iE N  is 11.8 dB and 15.5 dB, respectively. For 510bP −<  and 

ρ =1, the performance of the 8-PSK, r=2/3 system is better than that of the QPSK, r=1/2 

system. 
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Figure 48 shows that for ρ =0.01, the 8-PSK, r=2/3 system is better than the 

QPSK, r=1/2 system. For 510bP −= , the QPSK, r=1/2 system requires  / 19.0b iE N =  dB, 

while the TCM system with 8-PSK, r=2/3 requires / 17.4b iE N =  dB, which yields a 

difference of 1.6 dB. 
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Figure 47. Comparison between QPSK, r=1/2, K=1 TCM and 8-PSK, r=2/3, K=2 
TCM for ρ =1 and ρ =0.2 with /b oE N =10.2 dB and /b oE N =12.2 dB, respectively. 
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Figure 48. Comparison between QPSK, r=1/2, K=1 TCM and 8-PSK, r=2/3, K=2 
TCM for ρ =0.01 with /b oE N =10.2 dB and /b oE N =12.2 dB, respectively. 

 

5. Comparison between TCM with QPSK, r=1/2, K=1 and 8-PSK, r=2/3, 
K=3 

In this subsection we compare the performance between the QPSK, r=1/2, K=1 

and 8-PSK, r=2/3, K=3 TCM systems. As we see in Figure 49, for ρ =1 and ρ =0.2, the 

TCM system with 8-PSK, r=2/3 and K=3 has better performance than the TCM system 

with QPSK, r=1/2 and K=1. For 510bP −=  and ρ =1, the QPSK, r=1/2 system requires 

/ 11.8b iE N =  dB, while the TCM system with 8-PSK, r=2/3 requires / 10.4b iE N =  dB, 

which yields a difference of 1.4 dB. For 510bP −=  and ρ =0.2, /b iE N  is 15.5 dB and 13.4 

dB, respectively, and the difference is 2.1 dB. In Figure 50, the two systems are 

compared for ρ =0.01. For 510bP −= , the QPSK, r=1/2 system requires / 19.0b iE N =  

dB, while for the TCM system with 8-PSK, r=2/3, 510bP −<  for all /b iE N . Once again, 

the overall performance of 8-PSK, r=2/3, K=3 is better than for QPSK, r=1/2, K=1. 
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Figure 49. Comparison between QPSK, r=1/2, K=1 and 8-PSK, r=2/3, K=3 TCM for 
ρ =1 and ρ =0.2 with / 10.2b oE N =  dB and / 8.6b oE N =  dB, respectively. 
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Figure 50. Comparison between QPSK, r=1/2, K=1 and 8-PSK, r=2/3, K=3 TCM for 
ρ =0.01 with /b oE N =10.2 dB and /b oE N =8.6 dB, respectively. 

 

 

6. Comparison between TCM with QPSK, r=1/2, K=1 and 8-PSK, r=2/3, 
K=4 

In this subsection we compare the performance between the QPSK, r=1/2, K=1 

and 8-PSK, r=2/3, K=4 TCM systems. As we see in Figures 51 and 52, for ρ =1 and 

ρ =0.2, respectively, the TCM system with 8-PSK, r=2/3 and K=4 has better 

performance than the TCM system with QPSK, r=1/2 and K=1. For 510bP −=  and ρ =1, 

the QPSK, r=1/2 system requires / 11.8b iE N =  dB, while the TCM system with 8-PSK, 

r=2/3 requires / 8.6b iE N =  dB, which yields a difference of 3.2 dB. For 510bP −=  and 

ρ =0.2, the required /b iE N  is 15.5 dB and 11.1 dB, respectively, and the difference is 

4.4 dB. In Figure 53, the two systems are compared for ρ =0.01. For 510bP −= , the 
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QPSK, r=1/2 system requires / 19.0b iE N =  dB, while for the TCM system with 8-PSK, 

r=2/3, 510bP −<  for all /b iE N . Once again, the overall performance of the 8-PSK, r=2/3, 

K=3 system is better than that of the QPSK, r=1/2, K=1 system. 
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Figure 51. Comparison between TCM with QPSK, r=1/2, K=1 and 8-PSK, r=2/3, 
K=4 for ρ =1 with /b oE N =10.2 dB and /b oE N =7.8 dB, respectively. 
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Figure 52. Comparison between TCM with QPSK, r=1/2, K=1 and 8-PSK, r=2/3, 
K=4  for ρ =0.2 with /b oE N =10.2 dB and /b oE N =7.8 dB, respectively. 
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Figure 53. Comparison between TCM with QPSK, r=1/2, K=1 and 8-PSK, r=2/3, 
K=4  for ρ =0.01 with /b oE N =10.2 dB and /b oE N =7.8 dB, respectively. 

 

 

7. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK, r=2/3, 
K=3 

In this subsection we compare the performance between the QPSK, r=1/2, K=2 

and 8-PSK, r=2/3, K=3 TCM systems. As we see in Figure 54, for ρ =1 the performance 

of these two systems is approximately the same; and for a probability of bit error of 510− , 

the /b iE N  required is 10.4 dB. For ρ =0.2, the TCM system with QPSK, r=1/2 and K=2 

has better performance than the TCM system with 8-PSK, r=2/3 and K=3. For 510bP −= , 

the QPSK, r=1/2 system requires / 11.9b iE N =  dB, while the TCM system with 8-PSK, 

r=2/3 requires / 13.4b iE N =  dB, which yields a difference of 1.5 dB. Figure 55 shows 

that 510bP −<  for both systems for all /b iE N  when 0.01ρ = . 
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Figure 54. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK,  r=2/3, 
K=3 for ρ =1 and ρ =0.2 with /b oE N =8.1 dB and /b oE N =8.6 dB, respectively. 
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Figure 55. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK,  r=2/3, 
K=3 for ρ =0.01 with /b oE N =8.1 dB and /b oE N =8.6 dB, respectively. 

 

 

8. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK r=2/3, 
K=4 

In this subsection we compare the performance between the QPSK, r=1/2, K=2 

and 8-PSK, r=2/3, K=4 TCM systems. As we see in Figures 56 and 57, for ρ =1 and 

ρ =0.2, the TCM system with 8-PSK, r=2/3 and K=4 has better performance than the 

TCM system with QPSK, r=1/2 and K=2. For 510bP −=  and ρ =1, the QPSK, r=1/2 

system requires / 10.3b iE N =  dB, while the TCM system with 8-PSK, r=2/3 requires 

/ 8.8b iE N =  dB, which yields a difference of 1.5 dB. For 510bP −=  and ρ =0.2, the  
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required /b iE N  is 11.9 dB and 11.3 dB, respectively, and the difference is 0.6 dB. Figure 

55 shows that for ρ =0.01 both systems have approximately the same performance and 
510bP −<  for all /b iE N . 
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Figure 56. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK, r=2/3, 
K=4 for ρ =1 with /b oE N =8.1 dB and /b oE N =7.8 dB, respectively. 
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Figure 57. Comparison between TCM with QPSK, r=1/2, K=2 and 8-PSK, r=2/3, 
K=4 for ρ =1 with /b oE N =8.1 dB and /b oE N =7.8 dB, respectively. 
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Table 5. Comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM, each having the same 
number memory elements for 510bP −=  in PNI. 

Encoder /b oE N  ρ  /b iE N  Remarks 

r=1/2, K=2 8.1 dB 10.0 dB 

r=2/3, K=2 12.2 dB 

1ρ =  

11.8 dB 

QPSK, r=1/2 has better performance 
than 8-PSK, r=2/3 by 1.8 dB. 

r=1/2, K=2 8.1 dB 12.2 dB 

r=2/3, K=2 12.2 dB 

0.2ρ =  

15.0 dB 

QPSK, r=1/2 has better performance 
than 8-PSK, r=2/3 by 2.8 dB. 

r=1/2, K=2 8.1 dB For all 
/b iE N  

r=2/3, K=2 12.2 dB 

0.01ρ =

17.2 dB 

QPSK, r=1/2 has better performance 
than 8-PSK, r=2/3 for all /b iE N . 

r=1/2, K=3 7.4 dB 9.4 dB 

r=2/3, K=3 8.6 dB 

1ρ =  

10.5 dB 

QPSK, r=1/2 has better performance 
than 8-PSK, r=2/3 by 1.1 dB. 

r=1/2, K=3 7.4 dB 11.9 dB 

r=2/3, K=3 8.6 dB 

0.2ρ =  

13.5 dB 

QPSK, r=1/2 has better performance 
than 8-PSK, r=2/3 by 1.6 dB. 

r=1/2, K=3 7.4 dB 19.0 dB 

r=2/3, K=3 8.6 dB 

0.01ρ =

For all 
/b iE N  

8-PSK, r=1/2 has better performance 
than QPSK, r=2/3 for all /b iE N . 

r=1/2, K=4 7.1 dB 1ρ =  10.0 dB 

r=2/3, K=4 7.8 dB  9.1 dB 

8-PSK, r=2/3 has better performance 
than QPSK, r=1/2 by 0.9 dB. 

r=1/2, K=4 7.1 dB 11.2 dB 

r=2/3, K=4 7.8 dB 

0.2ρ =  

11.2 dB 

Both systems have equal 
performance. 

r=1/2, K=4 7.1 dB For all 
/b iE N  

r=2/3, K=4 7.8 dB 

0.01ρ =

For all 
/b iE N  

510bP −<  for both systems for all 
/b iE N . 
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Table 6. Comparison between QPSK, r=1/2 with K=1 and 8-PSK, r=2/3 TCM with K=2, 
3, and 4 for 510bP −=  in PNI. 

Encoder /b oE N  ρ  /b iE N  Remarks 

r=1/2, K=1 10.2 dB 11.8 dB 

r=2/3, K=2 12.2 dB 

1ρ =  

11.8 dB 

Both systems have equal 

performance. 

r=1/2, K=1 10.2 dB 15.5 dB 

r=2/3, K=2 12.2 dB 

0.2ρ =  

15.5 dB 

Both systems have equal 

performance. 

r=1/2, K=1 10.2 dB 19.0 dB 

r=2/3, K=2 12.2 dB 

0.01ρ =

17.4 dB 

8-PSK, r=2/3 has better performance 

than QPSK, r=1/2 by 1.6 dB. 

r=1/2, K=1 10.2 dB 1ρ =  11.8 dB 

r=2/3, K=3 8.6 dB  10.4 dB 

8-PSK, r=2/3 has better performance 

than QPSK, r=1/2 by 1.4 dB. 

r=1/2, K=1 10.2 dB 15.5 dB 

r=2/3, K=3 8.6 dB 

0.2ρ =  

13.4 dB 

8-PSK, r=2/3 has better performance 

than QPSK, r=1/2 by 2.1 dB. 

r=1/2, K=1 10.2 dB 19.0 dB 

r=2/3, K=3 8.6 dB 

0.01ρ =

For all 

/b iE N  

8-PSK, r=2/3 has better performance 

than QPSK, r=1/2 for all /b iE N . 

r=1/2, K=1 10.2 dB 11.8 dB 

r=2/3, K=4 7.8 dB 

1ρ =  

 8.6 dB 

8-PSK, r=2/3 has better performance 

than QPSK, r=1/2 by 3.2 dB. 

r=1/2, K=1 10.2 dB 15.5 dB 

r=2/3, K=4 7.8 dB 

0.2ρ =  

11.1 dB 

8-PSK, r=2/3 has better performance 

than QPSK, r=1/2 by 4.4 dB. 

r=1/2, K=1 10.2 dB 19.0 dB 

r=2/3, K=4 7.8 dB 

0.01ρ =

For all 

/b iE N  

8-PSK, r=2/3 has better performance 

than QPSK, r=1/2 for all /b iE N . 
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Table 7. Comparison between QPSK, r=1/2 with K=2 and 8-PSK, r=2/3, TCM with K=3 
and 4 for 510bP −=  in PNI. 

Encoder /b oE N  ρ  /b iE N  Remarks 

r=1/2, K=2 8.1 dB 10.1 dB 

r=2/3, K=3 8.6 dB 

1ρ =  

10.1 dB 

Both systems have equal 
performance. 

r=1/2, K=2 8.1 dB 11.9 dB 

r=2/3, K=3 8.6 dB 

0.2ρ =  

13.4 dB 

QPSK, r=1/2 has better performance 
than 8-PSK, r=2/3 by 1.5 dB. 

r=1/2, K=2 8.1 dB For all 
/b iE N  

r=2/3, K=3 8.6 dB 

0.01ρ =

For all 
/b iE N  

510bP −<  for both systems for all 
/b iE N . 

r=1/2, K=2 8.1 dB 1ρ =  10.3 dB 

r=2/3, K=4 7.8 dB  8.8 dB 

8-PSK, r=2/3 has better performance 
than QPSK, r=1/2 by 1.5 dB. 

r=1/2, K=2 8.1 dB 11.9 dB 

r=2/3, K=4 7.8 dB 

0.2ρ =  

11.3 dB 

8-PSK, r=2/3 has better performance 
than QPSK, r=1/2 by 0.6 dB. 

r=1/2, K=2 8.1 dB For all 
/b iE N  

r=2/3, K=4 7.8 dB 

0.01ρ =

For all 
/b iE N  

510bP −<  for both systems for all 
/b iE N . 

 

 

F. SUMMARY 

In this chapter, the performance of TCM in PNI with both r=1/2 encoding and 

QPSK modulation and r=2/3 encoding with 8-PSK modulation was examined for K=1, 2, 

3, and 4. The results of the comparison between QPSK, r=1/2 and 8-PSK, r=2/3 TCM 

systems with K=2, 3, and 4 are summarized in Tables 5, 6 and 7, where the /b oE N  was 

selected for 810bP −=  when / 1b iE N >> . 

 The performance of 8-PSK, r=2/3 TCM with K=2, 3, and 4 is shown in Tables 3 

and 4. As can be seen, the required /b iE N  decreases as the number of memory elements 
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increases, and the degradation due to PNI is much less for larger K. The conclusion is that 

TCM systems have significant resistance to PNI when K is large enough. 

A comparison between the two TCM systems investigated, both with the same 

number of memory elements K, was also made. As can be seen in Table 5, the QPSK, 

r=1/2 system has better performance than the 8-PSK,  r=2/3 system for K=2 and 3, but 

when the instantaneous interference power increases and fraction of time the PNI is on is 

reduced ( 0.2ρ < ), the performance of the 8-PSK, r=2/3 system is better. For K=4, the 8-

PSK, r=2/3 system has better performance.  

The two TCM systems were also compared when the number of memory 

elements in the 8-PSK, r=2/3 system is larger than for the QPSK, r=1/2 system. From 

Table 6 we see that the QPSK, r=1/2, K=1 system has the same performance as the 8-

PSK, r=2/3, K=2 system when 0.2ρ ≥ , but for 0.2ρ < , the 8-PSK, r=2/3, K=2 system 

performs better than the QPSK, r=1/2, K=1 system.  

From Table 6, we see that the 8-PSK, r=2/3, K=2 system is always better than the 

QPSK, r=1/2, K=1 system, and the difference increases as the fraction of time the PNI is 

on decreases. For 1ρ = , the 8-PSK, r=2/3, K=3 system is better than the QPSK, K=1 

system by 1.4 dB, and for 0.2ρ =  the difference increases to 2.1 dB. When 0.01ρ < , the 

8-PSK, r=2/3, K=3 system has  510bP −<  for all /b iE N ,while the QPSK, r=1/2, K=1 

system requires / 19.0b iE N =  dB.  

From Table 6, we see that for 1ρ =  and 0.2ρ = , the 8-PSK, r=2/3, K=4 system 

is always better than the QPSK, r=1/2, K=1 system by 3.2 dB and 4.4 dB, respectively. 

For 0.01ρ =  the 8-PSK, r=2/3, K=4 system has  510bP −<  for all /b iE N , while the 

QPSK, r=1/2, K=1 system requires / 19.0b iE N =  dB.  

The two TCM systems were also compared when K=2 and K=3 for QPSK, r=1/2 

TCM and 8-PSK, r=2/3 TCM, respectively. From Table 7, for 0.2ρ = , the QPSK, r=1/2 

system has better performance than the 8-PSK, r=2/3 system, but for 0.01ρ = , both 

systems have 510bP −<  for all /b iE N . 



96 

From Table 7, we see that for 1ρ =  and 0.2ρ = , the 8-PSK, r=2/3, K=4 system 

is always better than the QPSK, r=1/2, K=2 system by 1.5 dB and 0.6 dB, respectively, 

but for 0.01ρ = , both systems have  510bP −<  for all /b iE N .  

In this chapter the QPSK, r=1/2 and the 8-PSK, r=2/3 systems were examined 

when, in addition to AWGN, pulse-noise interference is also present. A comparison 

between the two systems having same number of memory elements as well as one TCM 

system having more memory elements was made. In the next and final chapter, we 

review the results obtained in this thesis and make recommendations for future research.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The performance of TCM with both r=1/2 encoding and QPSK modulation and 

r=2/3 encoding with 8-PSK modulation for 1, 2, 3, and 4 encoder memory elements was 

examined in this thesis. The data rate of the latter system is 50% greater than that of the 

former given the same channel bandwidth. The effect of both AWGN and PNI were 

considered.  

In order to compute the probability of bit error, only the first term in the upper 

bound, which is the dominant term for 510bP −< , was used without affecting the precision 

of the results. A comparison between TCM systems in AWGN only with the same 

number of memory elements K was made. The QPSK, r=1/2 system always has better 

performance than the 8-PSK, r=2/3 system. 

The two TCM systems were also compared when the number of memory 

elements in the 8-PSK, r=2/3 system was larger than for the QPSK, r=1/2 system and 

only AWGN was present. It was found that the QPSK, r=1/2, K=1 system has better 

performance than the 8-PSK, r=2/3, K=2 system for all 0/bE N . When we increase the 

number of memory elements in both encoders by a factor of two, we get an improvement, 

but for 510bP −> , the QPSK, r=1/2 system still has better performance. For 510bP −< , the 

8-PSK, r=2/3 system has a slightly better performance, on the order of 0.5 dB. Finally, 

when the 8-PSK, r=2/3 system has four times as many memory elements as the QPSK, 

r=1/2 system, the 8-PSK, r=2/3 system achieves a better performance, on the order of 1.6 

dB, for 510bP −= . In this case, we get both a higher data rate and better performance, but 

the complexity of the decoder increases significantly. 

Similar comparisons between QPSK, r=1/2 and 8-PSK, r=2/3 TCM systems with 

both AWGN and PNI were also made. The /b iE N  required decreases as the number of 

memory elements increases, and the degradation due to PNI is much less for larger K. 

Both TCM systems have significant resistance to PNI when K is large, and as K  
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increases, the degradation of the system due to PNI decreases, increasing the robustness 

of the system in PNI. Even small K results in some immunity from the degradation 

caused by PNI. 

A comparison between both TCM systems, each having the same number of 

memory elements, was made. The QPSK, r=1/2 system has better performance than the 

8-PSK, r=2/3 TCM system for K=2, but as K increases and ρ  decreases, the 8-PSK, 

r=2/3 system outperforms the QPSK, r=1/2 system. Hence, increased data rates as well as 

increased robustness when PNI is present can be simultaneously obtained at the cost of a 

slight increase in required 0/bE N . 

Finally, a comparison between the QPSK, r=1/2 and the 8-PSK, r=2/3 TCM 

systems was made with the latter system having more memory elements than the QPSK, 

r=1/2 system. The performance of the 8-PSK, r=2/3 system is better than that of the 

QPSK, r=1/2 system, and the difference between the two systems increases when the 

fraction of time the PNI is on decreases.  

 

B. RECOMMENDATIONS 
In this thesis, the performance of 8-PSK, r=2/3 and QPSK, r=1/2 TCM in AWGN 

as well as both AWGN and PNI for K=1, 2, 3, and 4 was investigated. The difficulty of 

the analysis increases exponentially as K increases, and as a result, the performance of the 

two TCM systems in both AWGN and PNI was not examined for more than four encoder 

memory elements per encoder. In order to evaluate the systems for large K, up to eight, 

simulations should be performed, avoiding the analytical difficulties attendant on TCM 

where K is large. 

Also using simulations, the research should be extended to TCM systems with 

higher code rates such as r=3/4 and r=4/5, examining the effects of pulse-noise 

interference. 

The relative immunity of TCM to a hostile noise environment is of great 

importance, especially in military applications, where the intentional interference of 

communications systems is often a fact.  
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